14.6 Références

EN

Andor, M., Frondel, M., Vance, C. 2017. Germany’s Energiewende: A Tale of Increasing Costs and Decreasing Willingness-to-Pay. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2928760

Blazejczak, J., Braun, F. G., Edler, D., Schill, W. -P. 2014. Economic effects of renewable energy expansion: A model-based analysis for Germany. Renewable and Sustainable Energy Reviews, 40, 1070–1080. https://doi.org/10.1016/j.rser.2014.07.134 

Berg, M., Hartley, B., Richters, O. 2015. A stock-flow consistent input–output model with applications to energy price shocks, interest rates, and heat emissions. New Journal of Physics, 17(1), 015011. https://doi.org/10.1088/1367-2630/17/1/015011 

BloombergNEF. 2020. Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh. Accessible à : https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/ 

Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., Breyer, C. 2021. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. https://doi.org/10.1016/j.energy.2021.120467  

Chang, M., Thellufsen, J. Z., Zakeri, B., Pickering, B., Pfenninger, S., Lund, H., Østergaard, P. A. 2021. Trends in tools and approaches for modelling the energy transition. Applied Energy, 290, 116731. https://doi.org/10.1016/j.apenergy.2021.116731 

Court, V., Jouvet, P.-A., Lantz, F. 2018. Long-term endogenous economic growth and energy transitions. The Energy Journal, 39(1). https://doi.org/10.5547/01956574.39.1.vcou

D’Alessandro, S., Luzzati, T., Morroni, M. 2010. Energy transition towards economic and environmental sustainability: feasible paths and policy implications. Journal of Cleaner Production, 18(6), 532–539. https://doi.org/10.1016/j.jclepro.2010.02.022

D’Aprile, P., Engel, H., Van Gendt, G., Helmcke, S., Hieronimus, S., Nauclér, T., Pinner, D., Walter, D., Witteveen, M. 2020. Net-Zero Europe: Decarbonization pathways and socioeconomic implications. McKinsey & Company. Consultable à : https://www.mckinsey.com/business-functions/sustainability/our-insights/how-the-european-union-could-achieve-net-zero-emissions-at-net-zero-cost 

Dolter, B., Rivers, N. 2018. The cost of decarbonizing the Canadian electricity system. Energy Policy, 113, 135–148. https://doi.org/10.1016/j.enpol.2017.10.040

EIA, 2016. Capital Cost Estimates for Utility Scale Electricity Generating Plants. Accessible à : https://www.eia.gov/analysis/studies/powerplants/capitalcost/archive/2016/pdf/capcost_assumption.pdf 

EIA, 2020. Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. Accessible à : https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf 

EPA. 2011. Assessing the Multiple Benefits of Clean Energy. A Resource for States. Accessible à : https://www.epa.gov/sites/production/files/2015-08/documents/accessing_the_benefits_of_clean_energy.pdf 

Fortes, P., Simoes, S. G., Gouveia, J. P., Seixas, J. 2019. Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Applied Energy, 237, 292–303. https://doi.org/10.1016/j.apenergy.2018.12.067  

Garcia-Casals, X., Ferroukhi, R., Parajuli, B. 2019. Measuring the socio-economic footprint of the energy transition. Energy Transitions, 3(1–2), 105–118. https://doi.org/10.1007/s41825-019-00018-6

Ghersi, F. 2015. Hybrid Bottom-up/Top-down Energy and Economy Outlooks: A Review of IMACLIM-S Experiments. Frontiers in Environmental Science, 3. https://doi.org/10.3389/fenvs.2015.00074 

Hafner, M., Tagliapietra, S. 2020. The geopolitics of the global energy transition. Lecture Notes in Energy. Springer International Publishing. https://doi.org/10.1007/978-3-030-39066-2 

Hardt, L., O’Neill, D. W. 2017. Ecological Macroeconomic Models: Assessing Current Developments. Ecological Economics, 134, 198–211. https://doi.org/10.1016/j.ecolecon.2016.12.027 

Heal, G. 2020. Economic Aspects of the Energy Transition (No. w27766). National Bureau of Economic Research. Accessible à : https://www.nber.org/papers/w27766 

IEA, 2020a. Projected Costs of Generating Electricity 2020. Paris: IEA, Accessible à : https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 

IEA, 2020b. Energy Technology Perspectives 2020. Paris: IEA, Accessible à : https://www.iea.org/reports/energy-technology-perspectives-2020 

Kayser-Bril, C., Ba, R., Whitmore, J., Kinjarapu, A. 2021. Decarbonization of long-haul trucking in Eastern Canada. Simulation of the e-highway technology on the A20-H401 highway corridor. CPSC Report. 20 pp. https://emi-ime.ca/wp-content/uploads/2021/05/EMI-2020-Kayser-Bril_report_eHighway-simulation.pdf 

Kempa, K., Moslener, U., Schenker, O. 2021. The cost of debt of renewable and non-renewable energy firms. Nature Energy, 6(2), 135–142. https://doi.org/10.1038/s41560-020-00745-x 

Kilickaplan, A., Bogdanov, D., Peker, O., Caldera, U., Aghahosseini, A., Breyer, C. 2017. An energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050. Solar Energy, 158, 218–235. https://doi.org/10.1016/j.solener.2017.09.030

Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D., Van de Graaf, T., Westphal, K. 2020. Covid-19 and the politics of sustainable energy transitions. Energy Research & Social Science, 68, 101685. https://doi.org/10.1016/j.erss.2020.101685 

Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J., Williams, R., Pacala, S., Socolow, R., Baik, EJ., Birdsey, R., Duke, R., Jones, R., Haley, R., Leslie, E, Paustian, K., Swan, A. 2020. Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report. Princeton University. Accessible à : https://environmenthalfcentury.princeton.edu/sites/g/files/toruqf331/files/2020-12/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf 

Lutz, C., Großmann, A., Lehr, U. 2014. Macroeconomic Effects of the Energy Transition. Project No. 31/13 of the Federal Ministry for Economic Affairs and Energy, Berlin. Accessible à : https://www.bmwi.de/Redaktion/Migration/DE/Downloads/Publikationen/gesamtwirtschaftliche-effekte-der-energiewende-english.pdf?__blob=publicationFile&v=2 

Mercure, J.-F., Pollitt, H., Bassi, Andrea. M., Viñuales, Jorge. E., Edwards, N. R. 2016. Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Global Environmental Change, 37, 102–115. https://doi.org/10.1016/j.gloenvcha.2016.02.003 

Mercure, J.-F., Knobloch, F., Pollitt, H., Paroussos, L., Scrieciu, S. S., Lewney, R. 2019. Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use. Climate Policy, 19(8), 1019–1037. https://doi.org/10.1080/14693062.2019.1617665 

Nakata, T. 2004. Energy-economic models and the environment. Progress in Energy and Combustion Science, 30(4), 417–475. https://doi.org/10.1016/j.pecs.2004.03.001

Nieto, J., Carpintero, Ó., Miguel, L. J., de Blas, I. 2020. Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy, 137, 111090. https://doi.org/10.1016/j.enpol.2019.111090

Nordhaus, W.D. 1992. The ‘DICE’ Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming. Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University. Accessible à : https://ideas.repec.org/p/cwl/cwldpp/1009.html

Ramos Carvajal, C., García-Muñiz, A. S., Moreno Cuartas, B. 2019. Assessing Socioeconomic Impacts of Integrating Distributed Energy Resources in Electricity Markets through Input-Output Models. Energies, 12(23), 4486. https://doi.org/10.3390/en12234486

Režný, L., Bureš, V. 2018. Adding Feedbacks and Non-Linearity to the Neoclassical Growth Model: A New Realm for System Dynamics Applications. Systems, 6(2), 8. https://doi.org/10.3390/systems6020008 

Režný, L., Bureš, V. 2019. Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth. Sustainability, 11(13), 3644. https://doi.org/10.3390/su11133644  

Rodríguez-Sarasty, J. A., Debia, S., Pineau, P.-O. 2021. Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower. Energy Policy, 152, 112210. https://doi.org/10.1016/j.enpol.2021.112210

Unnerstall, T. 2017. How expensive is an energy transition? A lesson from the German Energiewende. Energy, Sustainability and Society, 7(1). https://doi.org/10.1186/s13705-017-0141-0   Vrontisi, Z., Fragkiadakis, K., Kannavou, M., Capros, P. 2019. Energy system transition and macroeconomic impacts of a European decarbonization action towards a below 2 °C climate stabilization. Climatic Change, 162(4), 1857–1875. https://doi.org/10.1007/s10584-019-02440-7